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Abstract 

Mesons with heavy quarks are modeled by putting ferrnions on the ends 

of a string. The spin dependence of the fcrmion potential over large 

distances is found by solving for the classical motion of a rotating string. 

Some general remarks about such theories of “heavy” strings are also 

made. 
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The potential between heavy quarks is a problem of fundamental as well as 

practical significance. For infinitely massive quarks the potential is of necessity a 

scalar quantity, but for quarks of finite mass more detailed questions arise, such as 

its spin dependence [l-7]. Eichten and Feinberg [l] developed a general formalism 

to calculate the potential’s spin dependence in QCD. They find 

Vapin-orbit= &-$3) 3qr)+21qr)) 

is . s; 1 d --- 
m1m2 

;& (W’)) 1 

for quarks of mass ml and mr, angular momentum i1 and c, and spin S; and Zs, 

respectively, separated by a distance r. V(r) is the static potential, while VI(T) and 

V*(r) are determined by an insertion of a chrome-electric and a chrome-magnetic 

field into a Wilson loop. Only the spin-orbit terms are written in eq. (1). The 

spin-spin terms are related to functions l’s(r) and Vk(r), which are given by two 

insertions of a chrome-magnetic field into a Wilson loop. The functions V and 

VI.. V, determine the complete spin dependence of the quark potential to leading 

order in lfmr. 

In a confining theory the scalar potential V(r) depends linearly on r over large 

distances. The question of interest is whether any of the functions VI.. . Vd have 

terms which are significant over large distances. 

Based upon a picture of “electric” confinement, a first guess might be that all 

of the functions V, . . . I’, are short ranged. Buchmiiller was the first to suggest that 

this might not be true [2]. He argued that for an electric flux tube which rotates 

with the heavy quark, the field in the rest frame of the heavy quark is purely electric, 

so the only spin-orbit term in the potential comes from Thomas precession. The 

resulting spin-orbit term is opposite in sign to that found in an atom, where the 

electron moves through a static electric field which does not rotate. Buchmtiller’s 

conclusion was reached in another way by Gromes [3], who showed that Lorentz 

invariance implied a relation between V, VI, and V,: V. - VI = V. Under the 

plausible assumption that Vz is short-ranged compared to V and VI, one obtains 

VI = -V over large distances. From eq. (l), this long-range part of VI flips the 

sign of the spin-orbit term from that which would result if both VI and I’, were 



-2- FERMILAB-Pub-861122-T 

short-ranged. These arguments also suggest that only the spin-orbit terms have 

long-ranged pieces: the spin-spin terms V, and I’, are expected to be short-ranged. 

This sign of the spin-orbit term, which is sometimes described as scalar-like, 

is in good agreement with charmonium spectroscopy [2-61 and with Monte Carlo 

simulations of QCD [7]. Nevertheless, there has been no simple model which both 

exhibits confinement and allows for the long-distance behavior of the spin-dependent 

potential to be computed directly. 

In this paper we present such a model. Confinement is built into theories of 

strings, since even at the classical level the potential is linear. Based upon the 

analogy with lattice gauge theories [S], we model heavy quark systems by putting 

massive fermions on the ends of a string [D-12]. The model which results was 

originally proposed by Bars [lo], and studied by him, Kikkawa and Sato [ll], and 

others (10-121; it is closely related to flux-tube models of confinement [13]. 

We compute the spin-dependent part of the potential for this model of “heavy” 

strings by solving for the classical motion of a rotating string. The results we find 

are very similar to those expected in the electric flux-tube picture: the sign of the 

spin-orbit term is scalar-like, with no spin-spin interactions over large distances. 

(Spin-spin interactions in string theories have been calculated by Kogut and Parisi 

[14], but the effects they find are of higher order in l/m’.) 

The spectrum of bound states for heavy strings has been studied previously 

[11,12], but in these works the potential was determined from the energy of the 

system. In contrast, following Eichten and Feinberg [l] we determine the potential 

by evaluating the propagator for heavy fermions coupled to a string. It is only in 

this way that the (correct) spin-orbit term emerges. 

This model of heavy strings might be of interest beyond the admittedly technical 

question which we have set out to answer here. For this reason, along the way in 

our discussion we pause to discuss such matters ss other models of heavy strings 

and the quantization of these theories. 

Theories of strings in QCD presumably arise when the original gauge degrees 

of freedom are integrated out to yield an effective theory of flux sheets and the like 

that only involves purely geometrical variables. To describe a flux sheet we take 
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the usual Nambu action, 

satring = /I / d( i: f CT’)* - qz’)2 dudr. 

The coordinate z = zO(o,r) represents the embedding of the world-sheet in four 

(Minkowski) dimensions, with signature (+ - - -). The Lorentz index a on zoL will 

often be dropped: & = &z = &*/c%, z’ = S’,r = &rn/&r. The world-sheet is 

parametrized by o and 7, with r a time-like variable of infinite extent, while o 

describes the spatial extent of the string, which is always chosen to run from 0 to 

rr. The string tension equals F. The Nambu action is invariant under arbitrary 

reparametrizations, 

u + +Y,r), 7 -+ ?(U,T), (3) 

subject to 
a6 

(-) ar =o., / 
o=o,r 

(4) 

Consider an idealized limit of QCD in which the effects of light quarks can be 

neglected. For a bound state of heavy quarks, the quarks act as the sources of color 

flux, so to introduce quarks into the string model, it is most natural to attach them 

only to the ends of the string. (It is possible to put quarks on the entire world- 

sheet [15], but this does not seem relevant for heavy quarks; it might be so for light 

quarks in the adjoint representation.) Following the example of the world-sheet, 

we use purely geometric variables to describe the matter fields on the ends of the 

string. We assume that the matter fields are invariant under reparametrizations of 

the world-sheet, but transform as usual under Lorentz rotations. 

This is trivial for scalar quarks, as the action is simply proportional to the length 

of the world-line for the ends [Q]: 

S aeolar = ml jb-O@dr+m2/ @dr, 
o=r 

for a quark of mass ml at one end and mass ms at the other. It is important to 

stress that the reparametrization invariance of the string theory is the same with 

eq. (5) as without. Having fixed the length of the string to be x, terms on the 

ends need only be invariant under reparametrizations of r, which eq. (5) clearly is. 

(Note that while in the interior of the world-sheet j. transforms inhomogeneously 
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under reparametrizations, because of eq. (4) it transforms homogeneously on the 

boundary.) 

Eq. (5) is the invariant action for a scalar field propogating in a curved, one 

dimensional manifold with a metric tensor gss = z ‘r. To introduce fermions on the 

ends, we use the sin-bein e; = ?a. The spin connection automatically vanishes in 

one dimension, so the invariant action for a fermion of mass m at 0 = r is [lo] 

S,rrmion = /,-. (-;$ (i&h’) +mv@@) dr, 

with a similar term for the fermion at the other end of the string; gr:=zV - 5r. The 

fermion field $ is a Dirac spinor under Lorentz transformations, but is unaltered 

by reparametrizations of r; then the fermion action is obviously reparametrization 

invariant. The total action is the sum of the string and fermion actions. 
I 

The equation of motion for II, is 

D+G= -& - 22 r $+($)++b=o. 

Away from the ends the equations of motion for z are unaffected by the boundary 

terms, so in orthonormal gauge, 

jJ. 5’ = &2 + (4’ = 0, 63) 

z satisfies the wave equation for a free massless field in two dimensions, 

(a; - a;)xe = 0. (9) 

To compute the boundary conditions that relate $ and z at the ends of the 

string requires the fermion contribution to the canonical momentum, lITcrm: 

SSJ,,, 
=&n 6k =-++ 

01 
& (k2$ - P5p) (g&+). (10) 

Using the fermion’s equation of motion, eq. (7), 

qLn = m %+q+w,IZmJ. VG (11) 
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For massive fermions 1c, can be normalized so that $lc, = 1. The first term in eq. 

(11) is just that which would be obtained for a scalar of mass m. The second term 

is special to fermions and is proportional to their spin density. 

In orthonormal gauge the boundary conditions become 

w-qwfn = f/A (x’)“, (12) 

where the sign is (+) at o = 0 and (-) at o = ?r. 

Classical solutions for heavy strings are given by solving eq.‘s (7), (Q), and (12). 

Before going to the special case of a rotating string, we remark that while eq. (6) 

is the simplest and most natural action for a massive fermion, it is by no means 

unique. For example, sticking to terms that are bilinear in the fermion fields, it is 

possible to add 

J ( ~=* ~iw + n xk2 2 $= &($N) (13) 

to the action of eq. (6). The canonical momentum for this generalized theory is, 

after using the equations of motion, 

%n = m (1+ fc”) Sr”, [A ?])1L 

In the non-relativistic limit, this can be shown to be equal to 

=&n = (m+ril) ++ &$0+4aw,kr1M. (15) 

By comparison with eq. (ll), we see that for the action of eq. (13), the effective 

mass of the fermion is given by m + r?z, while the spin density is multiplied by l+ K~. 

That is, the K. dependent term in eq. (13) acts like an anomalous magnetic moment 

for the fermion. For the action to be hermitian n must be real, so the anomalous 

magnetic moment is always greater than the bare one. In what follows we treat the 

simplest case, the action of eq. (6). 

Eq. (6) is a reasonable action for very massive quarks, but it is not well defined 

in the chiral limit, m = 0. Massless ends move at the speed of light, so ? = 0 
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and the fermion action blows up. It might be possible to approach the chiral limit 

by setting m # 0 and then carefully sending m -+ 0. (For an example of this, see 

Bardeen et al. [Q]). We propose an alternate approach. Unlike most field theories 

of fermions, in the action of eq. (6) the fermion field is dimensionless. Thus it is 

possible to take as an action 

SJcrmion = J ( CT=* -$-$ (,*%J)) d7, 
subject to the nonlinear constraint 

(iu,)” + ($7sti)s = 1. 

This model is chirally symmetric, but because of the constraint the ends do not 

necessarily move at the speed of light, and so the presence of 5’ in the action need 

not cause a problem. The constraint fixes the scale of $, with es in eq. (16) a 

dimensionless coupling constant; as a type of nonlinear model we suspect that it is 

asymptotically free. In any case, the constraint generates a series of four-, six- and 

higher point interactions between the fermion on the end of the string with itself. 

We now return to the fermion action of eq. (6), to determine the classical 

solution which represents a rotating string. We work in the extreme non-relativistic 

limit, where the fermion mssses are much larger than the scale set by the string 

tension, m > ,/,ii. Further, we nail down the end of the string at 0 = 0 by taking 

the fermion at that end to be infinitely massive. This last assumption is not essential 

and is only done to simplify the algebra. 

In the non-relativistic limit, the time-like component of the canonical momentum 

for the fermions, eq. (11) , is 

with the space-like components equal to 

2 Hi,,,, = ” 5’ + 7 
VG (3) 5 

eijk z’sk, 

(18) 

09) 
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where .si is the fermion’s spin density, 

If the masses of the fermions are large they move very slowly, with the string 

responding essentially instantaneously to the fermions’ motion. Because of this, to 

first approximation we can assume that the fermion at o = x simply moves in a 

circle about that at o = 0: it moves with frequency w in the x-y plane, at a distance 

r from the origin. 

The solution for s?(o, r) is especially simple: 

xO=pr, i 
sin(wo) 

2 = r .n(wx) (cos(wr),san(wr)) . 

The constant p is set by the gauge condition of eq: (8), p = w r/sin(wz). For small 

w, p - r/z and the string is straight. 

The boundary condition on the time-like component z”, eqs. (12) and (lQ), is 

satisfied trivially, The boundary condition on the spatial components zi, eqs. (12) 

and (20), determines the frequency w : 

(22) 

m (z w,,)r = p r. This equation for w expresses the condition that the string tension 

must balance against the centrifugal force felt by the fermion. The frequency w, 

is the same as for a scalar particle, with the second term in eq. (22) the (leading) 

correction to w from the fermion’s spin. 

The total energy of the system, E, is equal to the sum of the energies for the 

fermion and the string. The latter is just pr, while the former can be found from 

eq. (18) to give 
i.z P E=imv2+m+pr+-- 
2m2 7’ 

where u = KW, is the magnitude of the velocity for the rotating fermion, i = mrv i 

its angular momentum, and s’ its spin. To obtain the i. s’ term in eq. (23), it is 

necessary to recognize that rn5?‘/&? = m + m(wz)2/2 + . . and keep track of all 

terms - O(wz). The sign of the spin-orbit term in eq. (23) is vector-like, and is 
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opposite to the scalar-like sign given by Buchmiiller’s electric flux tube argument 

PI. 
At this point we have only duplicated the results of Kikkawa, Sato, and others 

[lI,I2], extrapolated to the non-relativistic limit. This is not the whole story, how- 

ever - we must go on to evaluate the propagator for the fermion on the end of the 

string, as Eichten and Feinberg [l] did for the quark propagator in &CD. In this 

we follow the treatment of Peskin [4]. 

The fermion propagator is given by l/D+, eq. (7). Define D- from eq. (7) by 

taking the opposite sign for the fermion mass, and form the product of D+ and D-: 

-D+D- = ($=&+!$$)2+m2. (24) 

To verify this relation it is simplest to first assume that i.r is a constant. Because 

D+D- is already in a form that is manifestly reparametrization invariant, it must 

then be correct for arbitrary 5’. 

Eq. (24) is rather surprising: by squaring the inverse fermion propagator we 

obtain an inverse propagator that looks like that for a scalar field coupled to a 

background gauge field A,, 

4 = &I$, $1. (25) 

Except for the appearance of A,, D+D- is the right covariant laplacian for a scalar 

field propagating in a curved, one-dimensional manifold with metric 90s = 5’. We 

emphasize that our calling A, a gauge field is meant as nothing more than a helpful 

analogy which is useful in evaluating the propagator. A, is completely determined 

by the string fields I, and there is no (explicit) gauge field nor any gauge invariance 

associated with it. 

Since l/D+ = (l/D+D-)D-, it is only necessary to evaluate the scalar type 

propagator l/D+D- [4]. For this we can use an old trick of Feynman’s [16] to write 

the scalar propagator as a path integral: 

G= & = lrn d& jldr] esp(---is,) (26) 
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where S, is the action 

Eqs. (26) and (27) should be familiar, at least after learning how to translate from 

the usual variables to those relevant for heavy strings. The sum over paths is over 

those in r space (not in z space), with < the proper time for these paths. Integrating 

over the total proper time & produces the propagator G. 

In this representation it is easy to evaluate the propagator. The term which is 

like a Wilson loop for A,, esp(-iJA, dr), is independent of [, while the remaining 

terms are identical to those for a scalar particle. Doing the integrals by stationary 

phase gives [4,16] 

G-ezp(--ij(m&+A,)dr), (28) 
I 

where z represents a given solution to the equations of motion. (In the exponential 

we have written m fi times the total length in r space as an integral over r.) The 

vector potential A, can be decomposed into two pieces, A, = AS’ + ATag, 

1 AmW = - 
’ 7 

- .yt’jl 0’3 
222 . 

While A;l is larger than A, m”g in the non-relativistic limit, it can be shown that when 

ezp( -i J A$ dr) is sandwiched between the non-relativistic wave-functions found 

from eq. (7), for large r it gives a term that is purely real. Such a real term 

does not contribute to the action for the system, and only serves to renormalize 

the wave-functions [4]. Evaluating esp(-i J A, nog dr) is direct for a rotating string. 

It is convienient to write the result in terms of the physical time t = z” = rr/x. 

Including the action for the string gives 

where V.,,;,,,(r) is the potential 

Vatring = m + fir - 2 F. (31) 
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The coefficient of the r. s’term in eq. (31), = -+, is a sum of two terms. Ay* con- 

tributes -1, while the expansion of &? contributes +i (see the discussion following 

eq. (23)). The overall factor of i is the correct value for Thomas precession. 

Eq. (31) is our principal result: over large distances the sign of the spin-orbit 

term is scalar-like, and there is no spin-spin interaction. 

From the form of eq. (l), the reader might wonder whether our results are 

affected by the fact that we have assumed one fermion is infinitely massive. We 

have solved for the case of two fermions with equal mass, and verified that the 

solution (up to factors of two and the like) is of the same form, with a scalar-like 

spin-orbit term and no spin-spin interaction. Relative to the QCD potential of eq. 

(l), this corresponds to VI(~) = -V(r) = -or and Vz(r) = b’s(r) = I’d(r) = 0. 

The sign of the spin-orbit term found from the fermion propagator in eq. (31) is 

opposite that found from the energy in eq. (23). The reason for this difference is not 

apparent from our treatment, but would be so if we had followed the approach of 

Eichten and Feinberg directly, as opposed to Peskin’s elegant variation. Calculating 

the spin-orbit term requires keeping track of quantities that are small in the non- 

relativistic limit. Choose a basis in which the upper components of the fermion 

wave-function are large in the non-relativistic limit. One source of small terms 

arises from an upper component that turns into a lower component, propagates for 

a short period of time, and then flips back [l]. Evaluating the energy as in eq. 

(23) neglects the virtual mixing of upper and lower components in the fermion’s 

propagation. In contrast, an especially painless way of keeping track of all of this is 

to evaluate the fermion propagator by the path integral representation used above 

141. 

There are many other problems that could be addressed using heavy strings. 

We conclude by discussing their quantization. It is known that if the ends of the 

string are either massless [17] or infinitely massive [18], that the theory is only 

consistent in 26 dimensions. By following the usual approach [17,18] it is not clear 

whether this carries over to strings with ends that have a finite but non-zero mass. 

Consider a string with scalars on both ends, eq. (5), taking one end to be infinitely 

massive and the other of mass m: mr = 00, mr = m. It is possible to use the 

gauge invariance left over in orthonormal gauge to require that i2 be a constant, 

independent of 7, for o = r; i.e., that along that end of the string r is proportional 
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to the proper time for the scalar particle. In this instance the boundary condition 

like that of eq. (12) is 

P = -e (z’)=, (32) 

where c = p&?/m, evaluated at o = r. The solution to eqs. (9) and (32) for the 

spatial components of z is 

2 = c a; sin(p,o) ezp(ip,r) + e.e. 
” 

(33) 

with a similar solution for z” [18]. The sum in eq. (33) is over all pn that satisfy 

the transcendental equation 

p, tan(xp,) = e. (34) 

If the mass is neither zero or infinite, the sum of any two solutions to eq. (34) is 

not itself a solution. This means that when the orthonormal gauge condition of 

eq. (8) is imposed upon eq. (33), th e usual Virasdrb conditions are not obtained if 

co > m > 0, and it is obscure how to implement the gauge condition. 

An argument for a critical dimension can be given, however, by using the func- 

tional approach of Polyakov [19]. Introduce a metric tensor gob on the world sheet 

(a,b=cr,r) and a scalar function X on the boundary, with an action 

;/(~gPb(&z)+bz)) dud,+;-&+;) &. (35) 

Integration over the fields gab and X reproduces the original action. As usual for the 

Nambu string, eq. (35) is invariant under local conformal transformations of gob. 

The z fields appear quadratically in eq. (35), so they can be integrated out to give 

PI 
26 - d 
- / (i (a.log(p))2 + pren p) du dr + boundary terms, 

48~ (36) 

in conformal gauge, g.b = pnob, for an arbitrary number of dimensions d. The 

boundary terms in eq. (36) will be complicated, but on the world sheet there is 

just the standard Liouville action. Requiring that the local conformal symmetry be 

manifest implies that d = 26. 

Does this mean that our results are only valid for the quarks in 26 dimensions? 

Not at all. Helfrich [ZO] and Polyakov [21] h ave proposed models of “smooth” 

strings, where a term involving the extrinsic curvature of the world sheet is added 
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to the Nambu action. Smooth strings do not have a local conformal symmetry and 

so are surely a consistent string theory in four space-time dimensions. Moreover, 

for the simple kind of open string solutions which we have used here, on the world 

sheet these solutions are unaffected by the presence of a curvature term [22]. The 

curvature term does alter the boundary condition of eq. (12), but over large dis- 

tances (rm >> 1) this can be ignored. Thus our entire analysis should be viewed as 

an exercise in strings that are smooth as well as heavy. 

For any kind of string, over large distances fluctuations to one loop order in the 

string variables generate a correction - l/r to the linear term in the static potential 

[23]. Such fluctuations will also produce spin dependent terms - 1/r3; it would be 

interesting to see what these look like. 

! 
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